ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Solid-state conformation of diastereomeric -Pro-Pro-(Aib)₄ sequences

Makoto Oba ^a, Yosuke Demizu ^{b,*}, Nanako Yamagata ^b, Yukiko Sato ^b, Mitsunobu Doi ^c, Masakazu Tanaka ^d, Hiroshi Suemune ^a, Haruhiro Okuda ^b, Masaaki Kurihara ^{b,*}

- ^a Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- ^b Division of Organic Chemistry, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
- ^cOsaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan
- ^d Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

ARTICLE INFO

Article history:
Received 28 December 2009
Received in revised form 1 February 2010
Accepted 1 February 2010
Available online 4 February 2010

Keywords:
Peptide
Helix
X-ray crystallographic analysis
Conformation
Secondary structure

ABSTRACT

The crystal structures of two diastereomeric -Pro-Pro-(Aib)₄- sequences, Cbz-L-Pro-L-Pro-(Aib)₄-OMe (**1**) and Cbz-D-Pro-L-Pro-(Aib)₄-OMe (**2**), have been determined by X-ray crystallographic analysis. The crystals of the two compounds were characterized by the following parameters: (**1**) monoclinic, $P2_1$, a=10.543 Å, b=8.103 Å, c=22.642 Å, $\beta=97.679$, Z=2, $R_1=0.104$, and $R_w=0.327$; (**2**) orthorhombic, $P2_12_12_1$, a=10.470 Å, b=10.953 Å, c=32.405 Å, Z=4, $R_1=0.040$, and $R_w=0.046$. In the asymmetric unit of **1**, the homochiral L-Pro¹-L-Pro² adopts a polyproline II structure, which induces a left-handed (*M*) 3_{10} -helical structure in the following -(Aib)₄- sequence. The preferred conformation of diastereomeric **2**, which contains heterochiral D-Pro¹-L-Pro² segments, was similar to that of **1** with differences at the N-terminal D-Pro residue.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The development of a template for controlling the secondary structure of peptides is important for creating a variety of artificial peptides, proteins, and macromolecules. To date, we have studied the conformation of peptides composed of various α, α -disubstituted α-amino acids.² L-Proline (L-Pro), one of the 20 naturally occurring amino acids, has a propensity to induce a turn structure in peptide sequences because of the constraint of its pyrrolidine ring skeleton, and L-Pro and its derivatives (including some specially designed derivatives) have been synthesized to control peptide secondary structures.³ Furthermore, homochiral diproline (L-Pro-L-Pro) segments have been used as templates for the induction and stabilization of helical structures, and heterochiral p-Pro-L-Pro segments have been used as templates for β-hairpin structures.⁵ As part of our ongoing research, we wish herein to report the conformation of two diastereomeric hybrid peptides containing diproline segments and an α,α -disubstituted α -amino acid. That is to say, L-Pro-L-Pro and D-Pro-L-Pro were used as diproline segments, and 2-aminoisobutyric acid (Aib) was used as an α , α -disubstituted α -amino acid. Aib is widely used to construct helical structures and does not show

E-mail addresses: demizu@nihs.go.jp (Y. Demizu), masaaki@nihs.go.jp (M. Kurihara).

helical-screw handedness bias because of its achiral amino acid.⁶ We have designed and synthesized two hexapeptides, Cbz-L-Pro-L-Pro-(Aib)₄-OMe (**1**) and Cbz-D-Pro-L-Pro-(Aib)₄-OMe (**2**), and studied their preferred conformations in the crystalline state.

2. Results and discussion

2.1. Synthesis of two diastereomeric peptides 1 and 2

The synthesis of peptides **1** and **2** was performed by the coupling of Cbz-(Pro)₂-OH and H-(Aib)₄-OMe using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxybenzotriazole hydrate (HOBt) as coupling reagents by the solution-phase method (Scheme 1). The spectroscopic data of **1** and **2** supported the structures in Scheme 1.

2.2. Conformation of peptides 1 and 2

Single crystals of peptides **1** and **2** were grown from MeOH/H₂O and EtOH, respectively. Data collection was performed using Bruker Smart 1000 imaging plate diffractometers and graphite-monochromated Mo $K\alpha$ radiation. All crystals remained stable during the X-ray-data collection. The structures were solved using the SHELEX-97⁷ and SIR-97⁸ direct methods and expanded by the Fourier technique. All non-H-atoms were given anisotropic thermal parameters, some H-atoms were refined isotropically, and the

Corresponding authors.

Scheme 1. Reagents and conditions: (a) EDC, HOBt, Cbz-L-Pro-L-Pro-OH, or Cbz-D-Pro-L-Pro-OH, MeCN.

remaining H-atoms were given at the calculated positions. The final cycle of full-matrix least-squares refinement of ${\bf 1}$ gave an R_1 factor of 0.104 based on 4908 ($I > 2\sigma(I)$) reflections and an R_w factor of 0.327 for all data. The R_1 factor of ${\bf 2}$ was 0.040 based on 2951 ($I > 2\sigma(I)$) reflections and an R_w factor of 0.046 for all data. All data for peptides ${\bf 1}$ and ${\bf 2}$ have been deposited in the Cambridge Crystallographic Data Centre (CCDC) as a supplementary publication, and their CCDC reference numbers are CCDC-757487 and -757488, respectively. The crystal and diffraction parameters of ${\bf 1}$ and ${\bf 2}$ are summarized in Table 1. The relevant backbone torsion angles and the intra- and intermolecular hydrogen-bond parameters are listed in Tables 2 and 3.

Table 1
Crystal and diffraction parameters of 1 and 2

	1	2
Empirical formula	C ₃₅ H ₅₂ O ₉ N ₆ , 2H ₂ O	C ₃₅ H ₅₂ O ₉ N ₆ , H ₂ O
Mr	736.85	718.85
Crystal dimensions [mm]	$0.30 \times 0.20 \times 0.10$	$0.35 \times 0.25 \times 0.25$
Crystal system	Monoclinic	Orthorhombic
Lattice parameters:		
a, b, c [Å]	10.543, 8.103, 22.642	10.470, 10.953, 32.405
α,β,γ [°]	90, 97.679, 90	90, 90, 90
$V[Å^3]$	1917.0	3716.3
Space group	P2 ₁	$P2_12_12_1$
Z value	2	4
D _{calcd} [g/cm ³]	1.270	1.285
μ (Mo K_{α}) [cm ⁻¹]	0.95	0.94
No. of observations	4908 ($I > 2\sigma(I)$)	2951 ($I > 2\sigma(I)$)
No. of variables	469	462
R_1 , R_w	0.104, 0.327	0.040, 0.046
Solvent	MeOH/H ₂ O	EtOH

Table 2 Selected torsion angles ω , ϕ , and φ [°] for **1** and **2** as determined by X-ray crystallographic analysis

Torsion angles	1	2
ω_0	-0.6	176.9
ϕ_1	-60.3	62.8
φ_1	159.8	-136.8
ω_1	176.4	-163.6
ϕ_2	-57.9	-59.0
φ_2	145.2	125.2
ω_2	173.8	174.7
ϕ_3	51.1	63.8
φ_3	35.3	19.7
ω_3	172.2	156.1
ϕ_4	53.7	51.7
φ_4	34.4	49.3
ω_4	178.8	172.2
ϕ_5	52.8	66.6
φ_5	41.6	17.4
ω_5	172.2	179.7
ϕ_6	-47.4	-51.0
φ_6	-46.2	-41.2
ω_6	-172.2	-179.5

Table 3 Intra- and intermolecular H-bond parameters for 1 and 2^a

Donor	Acceptor	Distance [Å]	Angle [°]	Symmetry		
D-H	A	Distance [A]	D-H···A	operations		
Cbz-L-Pro-L-Pro-(Aib) ₄ -OMe (1)						
N ₄ –H	O_1	3.31 ^b	138.3	x, y, z		
N ₅ -H	O_2	3.08	153.0	x, y, z		
N ₆ -H	O_3	2.91	141.9	x, y, z		
O _{wa} -H ^c	O_1	2.79	174.3	x, y, z		
O _{wb} -H	O_{wa}	2.81	168.5	x, y, z		
N ₃ -H	$O_{5'}$	3.04	160.6	x-1, y, z		
O _{wb} -H	$O_{4'}$	2.84	171.3	x-1, y , z		
Cbz-p-Pro-L-Pro-(Aib) ₄ -OMe (2)						
N_4-H	01	3.12	162.3	x, y, z		
N ₅ -H	O _w ^c	2.90	160.8	x, y, z		
N ₆ -H	O_3	2.95	150.5	x, y, z		
O _w -H	O_0	2.78	172.2	x, y, z		
O _w -H	O_1	2.74	163.4	x, y, z		
N ₃ -H	O _{5′}	2.99	171.0	x, y-1, z		

 $^{^{\}rm a}$ The number of amino acid residues begins from the N-terminus of the peptide chain.

In the asymmetric unit of **1**, only one conformer of the peptide molecule was found together with two water molecules, and the -L-Pro¹-L-Pro² adopted a polyproline type II (P_{II}) structure, which induced a left-handed (M) 3_{10} -helical structure in the following -(Aib)₄- sequence (Fig. 1). The ϕ and φ torsion angles of L-Pro¹ were -60.3° and $+159.8^{\circ}$, and those of L-Pro² were -57.9° and $+145.2^{\circ}$, which are close to those of the P_{II} structure (-78° and $+149^{\circ}$). The mean values of the ϕ and φ torsion angles of the Aib residues (Aib³ to Aib⁵) were $+52.5^{\circ}$ and $+37.1^{\circ}$, which are close to those for an ideal left-handed (M) 3_{10} -helical structure ($+57^{\circ}$ and $+30^{\circ}$). Flipping of the torsion angles at the C-terminus occurred, that is, the values of the ϕ and φ torsion angles (-47.4° , and -46.2°) of the Aib⁶ residue were negative while those of the preceding residues, Aib³, Aib⁴, and Aib⁵, were positive.

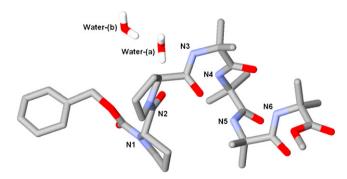


Figure 1. X-ray diffraction structure of 1.

Two intramolecular hydrogen bonds, in which each hydrogen bond formed a 10-membered (atoms) pseudo ring of the $i\leftarrow i+3$ type, were present in the 3_{10} -helical molecule of 1. That is, they were present between the H–N(5) and C(2)=O(2) [N(5)···

b The D...A distance is somewhat long for a hydrogen bond.

^c O_w: Water.

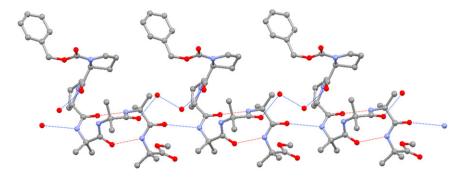
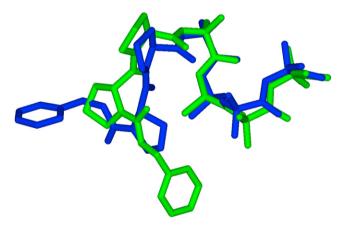


Figure 2. Packing of 1 in the crystalline state. Intramolecular (red) and intermolecular (blue) hydrogen bonds are indicated as dashed lines.

O(2)=3.08 Å] and between the H–N(6) and C(3)=O(3) [N(6)··· O(3)=2.91 Å]. Furthermore, one weak intramolecular hydrogen bond was observed between the H–N(4) and C(1)=O(1) [N(6)··· O(1)=3.31 Å]. Two water molecules (a, b) formed intermolecular hydrogen bonds between the H–O_w(a) of the water (a) donor and the C(1)=O(1) [O_w(a)···O(1)=2.79 Å] and between the H–O_w(b) of the water (b) donor and the O_w(a) of the water (a) acceptor [O_w(b)···O_w(a)=2.81 Å]. In the packing mode, two intermolecular hydrogen bonds were observed between the H–N(3) peptide donor and the C(5')=O(5') acceptor [N(3)···O(5')=3.04 Å] of a symmetry-related molecule (x-1, y, z) and between the H–O_w(b) of the water (b) donor and the C(4')=O(4') acceptor [O_w(b)···O (4')=2.84 Å] of a symmetry-related molecule (x-1, y, z), as shown in Figure 2.


In the asymmetric unit of **2**, only one conformer of the peptide molecule was present together with one water molecule (Fig. 3). The ϕ and φ torsion angles of p-Pro¹ were $+62.8^{\circ}$ and -136.8° , and

N2
N4
N6
N1
Water
N5

Figure 3. X-ray diffraction structure of **2**.

those of L-Pro² were -59.0° and $+125.2^\circ$. Thus, the D-Pro¹-L-Pro² segment did not form a type-II' β -turn conformation¹¹ because of the presence of the water molecule. The mean values of the ϕ and φ torsion angles of the Aib residues (Aib³ to Aib⁵) were $+60.7^\circ$ and $+28.8^\circ$, which are close to those of an ideal left-handed (M) 3_{10} -helical structure. The flipping of the torsion angles occurred at the C-terminus, and the ϕ and φ torsion angles (-51.0° and -41.2° , respectively) of the Aib⁶ residue were negative while those of the Aib³, Aib⁴, and Aib⁵ residues were positive.

Two intramolecular hydrogen bonds, in which each hydrogen bond formed a 10-membered (atoms) pseudo ring of the $i\leftarrow i+3$ type, were present in the 3_{10} -helical molecule of **2**. These bonds were found between the H–N(4) and C(1)=O(1) [N(4)··· O(1)=3.12 Å] and the H–N(6) and C(3)=O(3) [N(6)···O(3)=2.95 Å]. The water molecule was fixed by three hydrogen bonds between H–N(5) and O_w [N(5)···O_w=2.90 Å], H–O_w and C(0)=O(0) [O_w··· O(0)=2.78 Å], and between H–O_w and C(1)=O(1) [O_w··· O(1)=2.74 Å]. In the packing mode, one intermolecular hydrogen bond was observed between the H–N(3) peptide donor and the C(5')=O(5') acceptor [N(3)···O(5')=2.99 Å] of a symmetry-related molecule (x, y–1, z), as shown in Figure 4.

Figure 5. Overlay of the structures of peptides **1** (blue) and **2** (green).

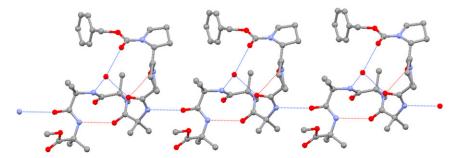


Figure 4. Packing of 2 in the crystalline state. Intramolecular (red) and intermolecular (blue) hydrogen bonds are indicated as dashed lines.

The structure of ${\bf 2}$ is well matched with that of ${\bf 1}$ except for the N-terminal D-Pro residue, as shown by their superimposition in Figure 5.

3. Conclusion

Two diastereomeric diproline (L-Pro-L-Pro and D-Pro-L-Pro) segments were attached on the N-terminus of H-(Aib)₄-OMe segment. X-ray crystallographic analysis revealed the preferred conformations of hexapeptides 1 and 2 in the crystalline state. In the crystal state of 1, the homochiral L-Pro¹-L-Pro² segment adopted a polyproline type II structure, which induced a left-handed (M) 3₁₀-helical structure in the following -(Aib)₄- sequence. On the other hand, in the crystal state of **2**, the heterochiral D-Pro¹-L-Pro² segment did not form a type-II' β -turn conformation because of the presence of a fixed water molecule. Thus, the L-Pro²-Aib³ segment bestowed a left-handed (M) screw sense^{3c} on the following Aib sequence. That is to say, the two diastereomeric Cbz-Pro-L-Pro-(Aib)₄-OMe peptides formed similar structures with different N-terminal Pro residues. These results will be valuable for researchers investigating the control of secondary structures and may be also relevant for the *de novo* design of peptides/proteins.

4. Experimental

4.1. General methods

Optical rotations $[\alpha]_D$ were measured with a *Jasco DIP*-316 polarimeter using a 0.5 or 1.0 dm cell. 1H NMR and ^{13}C spectra were recorded on a *Varian AS* 400 spectrometer, and measurements were carried out in CDCl₃ with tetramethylsilane used as an internal standard. FTIR spectra were recorded on a *JASCO FT/IR*-4100 spectrometer at 1 cm⁻¹ resolution, with a mean of 32 scans used for the solution (CDCl₃) method and a 0.1 mm path length adopted for NaCl cells. FABMS spectra were measured on a JEOL JMS-SX 102 spectrometer. Elemental analysis was performed at the Analytical Center of the Faculty of Sciences at Kyushu University.

4.1.1. Cbz-L-Pro-L-Pro-(Aib)₄-OMe (1). A mixture of Cbz-L-Pro-L-Pro-OH (173 mg, 0.5 mmol), H-(Aib)₄-OMe (186 mg, 0.5 mmol), ¹² EDC (115 mg, 0.6 mmol), and HOBt (81 mg, 0.6 mmol) in MeCN was stirred at room temperature for 48 h. The solution was then evaporated; diluted with AcOEt (30 mL); washed with 3% aqueous HCl, 5% NaHCO₃, and brine; and dried over anhydrous MgSO₄. Evaporation of the solvent gave a white solid, which was purified by column chromatography on silica gel (n-hexane/AcOEt=1:9) to give 1 (164 mg, 47%) as colorless crystals. Mp 193–194 °C (recryst from MeOH/H₂O); $[\alpha]_D^{24}$ –51.2 (c1.7, CHCl₃); IR (in CDCl₃ solution) 3317, 1741, 1698, 1645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (br s, 1H), 7.30–7.36 (m, 5H), 7.21 (br s, 1H), 7.19 (br s, 1H), 6.76 (br s, 1H), 5.14 (ABX, J_{AX} =13.0 Hz, J_{BX} =13.0 Hz, J_{AB} =37.0 Hz, 2H), 4.50 (t, J=7.5 Hz, 1H), 4.25 (t, J=7.5 Hz, 1H), 3.62-3.73 (m, 2H), 3.68 (s, 3H), 3.44 (m, 1H), 3.34 (m, 1H), 2.19-2.37 (m, 2H), 1.79-2.04 (m, 6H), 1.44-1.52 (m, 24H); 13 C NMR (100 MHz, CDCl₃) δ 175.5, 174.6, 174.2, 173.6, 172.0, 171.3, 154.9, 136.4, 128.5, 128.2, 128.0, 67.2, 61.8, 59.8, 56.9, 56.8, 56.5, 55.7, 52.0, 47.2, 46.7, 29.0, 28.8, 25.8, 25.6, 25.5, 25.2, 25.0, 24.9, 24.7, 24.5, 23.9; FAB(+)-MS: 701 (M+H); Anal. Calcd for C₃₅H₅₂N₆O₉: C, 59.98; H, 7.48; N, 11.99. Found: C, 59.73; H, 7.40; N, 11.91.

4.1.2. Cbz-D-Pro-L-Pro-(Aib)₄-OMe (2). Peptide 2 was prepared using a similar method to that described for the preparation of 1

(0.5 mmol scale). 137 mg, 39% yield; colorless crystals; mp 175–177 °C (recryst from EtOH); $[\alpha]_0^{24}$ –20.1 (c1.1, CHCl₃). IR (in CDCl₃ solution) 3327, 1740, 1666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (br s, 1H), 7.29–7.39 (m, 5H), 7.25 (br s, 1H), 7.24 (br s, 1H), 7.09 (br s, 1H), 5.19 (d, J=13.0 Hz, 1H), 4.99 (d, J=13.0 Hz, 1H), 4.46 (t, J=6.7 Hz, 1H), 4.41 (t, J=6.2 Hz, 1H), 3.97 (m, 1H), 3.68 (s, 3H), 3.55–3.64 (m, 3H), 1.91–2.27 (m, 8H), 1.52 (s, 3H), 1.50 (s, 6H), 1.48 (s, 3H), 1.44 (s, 3H), 1.43 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 174.6, 173.4, 172.7, 171.4, 155.1, 135.9, 128.6, 128.2, 127.3, 67.2, 61.5, 58.2, 56.8, 56.6, 56.5, 55.6, 51.9, 47.5, 47.0, 29.7, 29.2, 28.4, 26.3, 25.8, 25.7, 25.2, 25.0, 24.9, 24.5, 24.4, 24.3, 24.0, 19.3; FAB(+)-MS: 701 (M+H).

Acknowledgements

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (21790018) and by a Grant-in-Aid for Scientific Research on Priority Areas (No. 20037054, 'Chemistry of Concerto Catalysis') from the Ministry of Education, Science, Sports, and Culture of Japan.

References and notes

- 1. (a) Schneider, J. P.; Kelly, J. W. *Chem. Rev.* **1995**, 95, 2169–2187; (b) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. *Chem. Rev.* **2001**, *101*, 3131–3152.
- (a) Oba, M.; Tanaka, M.; Kurihara, M.; Suemune, H. Helv. Chim. Acta 2002, 85, 3197–3218; (b) Tanaka, M.; Nishimura, S.; Oba, M.; Demizu, Y.; Kurihara, M.; Doi, M.; Suemune, H. Chem.—Eur. J. 2003, 9, 3082–3090; (c) Tanaka, M.; Demizu, Y.; Doi, M.; Kurihara, M.; Suemune, H. Angew. Chem., Int. Ed. 2004, 43, 5360–5363; (d) Tanaka, M.; Anan, K.; Demizu, Y.; Kurihara, M.; Doi, M.; Suemune, H. J. Am. Chem. Soc. 2005, 127, 11570–11571; (e) Tanaka, M. Chem. Pharm. Bull. 2007, 55, 349–358; (f) Demizu, Y.; Tanaka, M.; Nagano, M.; Kurihara, M.; Doi, M.; Maruyama, T.; Suemune, H. Chem. Pharm. Bull. 2007, 55, 840–842; (g) Nagano, M.; Tanaka, M.; Doi, M.; Demizu, Y.; Kurihara, M.; Suemune, H. Org. Lett. 2009, 11, 1135–1137
- (a) Chou, P. Y.; Fasman, G. D. J. Mol. Biol. 1977, 115 435–175; (b) Wilmot, C. M.; Thornton, J. M. J. Mol. Biol. 1988, 203, 221–232; (c) Inai, Y.; Oshikawa, T.; Yamashita, M.; Hirabayashi, T.; Ashitaka, S. J. Chem. Soc. Perkin 2 2001, 892–897.
- (a) Kemp, D. S.; Curran, T. P.; Boyd, J. G.; Allen, T. J. J. Org. Chem. 1991, 56, 6683–6697; (b) Kemp, D. S.; Boyd, J. G.; Muendel, C. C. Nature 1991, 352, 451–454; (c) Rai, R.; Aravinda, S.; Kanagarajadurai, K.; Raghothamana, S.; Shamala, N.; Balaram, P. J. Am. Chem. Soc. 2006, 128, 7916–7928; (d) Chatterjee, B.; Saha, I.; Raghothama, S.; Aravinda, S.; Rai, R.; Shamala, N.; Balaram, P. Chem.—Eur. J. 2008, 14, 6192–6204.
- (a) Robinson, J. A. Synlett 2000, 429–441; (b) Hanessian, S.; Angiolini, M. Chem.—Eur. J. 2002, 8, 111–117; (c) Haines, L. A.; Rajagopal, K.; Ozbas, B.; Salick, D. A.; Pochan, D. J.; Schneider, J. P. J. Am. Chem. Soc. 2005, 127, 17025–17029; (d) Rai, R.; Raghothama, S.; Balaram, P. J. Am. Chem. Soc. 2006, 128, 2675–2681.
- (a) Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747–6756; (b) Heimgartner, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 238–264; (c) Wysong, C. L.; Yokum, T. S.; McLaughlin, M. L.; Hammer, R. P. Chemtech 1997, 27, 26–33; (d) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C.; Broxterman, Q.; Kaptein, B. J. Incl. Phenom. Macro. Chem. 2005, 51, 121–136.
- Sheldrick, G. M. SHELXL 97. Program for Crystal Structure Refinement; University of Göttingen: Göttingen, 1997.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115–119.
- 9. Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-99 Program System, Technical Report of the Crystallography Laboratory*; University of Nijmegen: The Netherlands, 1994.
- CCDC-757487 and -757488 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or deposit@ccdc. cam ac.uk)
- Ideal backbone torsion angles of type-II' β-turn: φ=60°, φ=-120°. (a) Nair, C. M.; Vijayan, M.; Venkatachalapathi, Y. V.; Balaram, P. J. Chem. Soc., Chem. Commun. 1979, 1183–1184; (b) Nair, C. M.; Vijayan, M. J. Chem. Soc. Perkin 2 1980, 1800–1804; (c) Bean, J. W.; Kopple, K. D.; Peishoff, C. E. J. Am. Chem. Soc. 1992, 114, 5328–5334.
- 12. Karle, I. L.; Ranganathan, D.; Lakshmi, C. Biopolymers 2001, 59, 301-304.